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The objective of this investigation was to evaluate different methods of including environmental variability directly into stock assess-
ments and to demonstrate how this inclusion affects the estimation of recruitment parameters, stock status, and the conservation
benchmarks used to manage a stock. Variations on two methods of incorporating environmental effects were tested. The first
method (“model” method) utilizes a structural change in the stock–recruitment function to adjust the annual expected number
of recruits by a value, either positive or negative, equal to that year’s anomaly in the environmental variable. The second method
(“data” method) allows for observation error in the environmental data and uses the time-series as an index to tune the vector of
estimates of annual recruitment deviations. Simulation techniques were utilized to produce datasets of known quantities that
were subsequently analysed with a widely used stock assessment platform. Under the circumstances simulated in this study,
neither method could be said to have performed significantly better than the other in all situations. Because the two approaches
handle years of missing data differently, the best approach is dictated by the available data, rather than a more appropriate method.
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Introduction
It has long been accepted that environmental factors play a major
role in accounting for year-to-year variability in exploited fish
stocks (Hjort, 1914; Cushing, 1982). These environmental
factors can include changes in air and ocean temperatures
(Chavez et al., 2003), upwelling (Ware and McFarlane, 1995), or
timing of the spring transition (Logerwell et al., 2003). One of
the main ways that the environment influences fish population
dynamics is by modulating annual recruitment, usually in the
form of young of the year survival. Explicitly including environ-
mental variables underlying this modulation into stock assess-
ments can help determine whether changes in recruitment are a
result of changes internal (i.e. parental stock size or spawning–
stock biomass) or external (i.e. changes in recruit survivorship)
to the population structure. At least three situations can benefit
from the inclusion of environmental data: (i) environmental varia-
bility causes a large deviations in recruitment, but conventional
fishery and survey data are not adequate to capture this variability
clearly, so including environmental data helps the model estimate
the correct time-series of recruitment; (ii) fish recruit to the fishery
at a young age, but there are no surveys of young fish to estimate
the recent levels of recruitment; (iii) there is a long-term signal in
the environment that affects recruitment, but this trend is con-
founded with a one-way decrement in the spawning biomass. In
this regard, including environmental data can decrease the var-
iance in parameter estimation and help to determine the true

stock–recruitment relationship and subsequent management
benchmarks.

The standard approach to include environmental data into
population models has been through the addition of a parameter
to the standard stock–recruitment function, which allows recruit
survival to deviate annually from the mean levels predicted by the
simpler function (Hilborn and Walters, 1992, p. 285). Because this
approach modifies the structure of the existing stock–recruitment
model by adding a parameter, this method is referred to here as the
model method. The shortcoming of the model method is that it
relies on the unrealistic assumption that the environmental
index is measured without error. Furthermore, because this
method accounts for the portion of the overall recruitment stan-
dard deviation caused by the environment through the additional
parameter in the modified stock–recruitment function, the envir-
onmentally caused deviation no longer contributes to the overall
recruitment standard deviation, usually an assumed (i.e. not esti-
mated) value in the stock assessment model. This necessitates that
the assumed overall recruitment standard deviation value be
reduced to reflect variation attributable only to forces other than
the environment. However, because the level of the overall recruit-
ment standard deviation scales the log-bias adjustment (so that the
expected arithmetic mean recruitment is equal to the mean from
the stock–recruitment function), this reduced value causes an
incorrect log-bias adjustment for the estimates of both the
annual as well as the virgin recruitment values.
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Another approach that seeks to overcome the shortcoming of
the model method is to use the environmental time-series in the
same manner that an age-0 survey is used. With this approach,
the environmental data are considered an index of recruitment
variability and, as such, are used to tune the time-series of
annual recruitment deviations from the fitted stock–recruitment
curve (Brandon et al., 2007). Because the environmental time-
series is fitted as part of the stock-assessment-model objective
function, and hence contributes to the total maximum likelihood
component, this approach is referred to as the data method.
Similar to a survey, the data method allows the environmental
data to have annual observation error associated with it and,
unlike with the model method, missing years are treated only as
missing years of data. The environmental effect is assumed to
occur after any density-dependence on recruitment has taken effect.

It has been demonstrated that recruitment of the US west coast
sablefish (Anoplopoma fimbria) is influenced by changes in the
environment (Schirripa and Colbert, 2006). Attempts to model
this influence were made in the most recent sablefish stock assess-
ment (Schirripa, 2007). The objective was to use simulation tech-
niques to test the efficacy of the model and data methods and to
determine the accuracy and precision of each. Simulation tech-
niques were used to create a population of fish whose recruitment
was modulated by a known environmental effect; then to assess the
population using the two methods and to compare the estimated
productivity values and management benchmarks with the true
values, in an effort to discover whether any biases and/or inac-
curacies were associated with each of the two methods.

Methods
An age-structured population model (FSIM) described in
Goodyear (1989) was used to create the simulated datasets. Its
application in the context of testing estimation methods has
been demonstrated in several studies (Goodyear, 1996, 2007;
Prager et al., 1996; Prager and Goodyear, 2001). A simple fishery
system was simulated, consisting of a single gear with data avail-
able annually on total catch, as well as samples of the age and
length composition of the catch, and a single survey that provided
estimates of annual stock biomass, as well as samples of age and
length compositions. A variable was added to simulate cyclical
variability in survival from egg to recruitment associated with tem-
poral variations in the environment. The simulation model was
implemented monthly based on female abundance only and it
included environmental effects on the mean survivorship of
age-0 recruits.

Simulated population data were fitted using the Stock Synthesis
II (SS2) stock assessment framework (Methot, 2009). This frame-
work uses a statistical catch-at-age approach to create a population
time-series that best fits the given observations using maximum
likelihood as the fitting objective. Details are given in Methot
(2009). The SS2 model was given the true parameter values as
the initial starting values with which to begin its iterative search
for the set of maximum likelihood parameter estimates. The
resulting estimates of parameter values and management bench-
marks were compared with known values from the FSIM
simulations.

Biological characteristics
The life-history characteristics described in the most recent sable-
fish stock assessment (Schirripa, 2007) were used to characterize
the species. These included mass-at-length, growth, and fecundity

functions. A natural (instantaneous) mortality rate of 0.07 was
used in all simulations. Total mature female body mass was used
as a proxy for the contributions to the spawning–stock biomass.

Annual recruitment in the simulated populations was deter-
mined from population fecundity at the beginning of each year,
using a Beverton–Holt stock–recruitment function:

R ¼
1

aþ b=P
;

where a is the rate of population growth, b controls the overall
population size, and p the parental stock size. The stock–recruit-
ment relationship controls mean recruitment for any given adult
stock size. Mean recruitment at maximum sustainable yield
(MSY) was set to 8000 fish; however, this number is arbitrary
and had no effect on our results. Annual stochastic variability
was added to the recruitment time-series by specifying a value
for the coefficient of variation of recruitment greater than zero.
This was accomplished by multiplying the predicted (mean)
recruitment from the stock–recruitment relationship by
exp(R � CV – 0.5 � CV2), where R is a random normal deviate,
with mean of zero and a variance of 1.0, and CV is the coefficient
of variation of the log of the random multiplier.

When an environmental effect was desired, a long-term tem-
poral trend was incorporated into the simulations by creating a
time-series of deviations from mean recruit survival. These were
incorporated into the simulation by multiplying the predicted
(mean) recruitment from the stock–recruitment relationship by
exp(D), where D is the assumed deviation from the expected
recruitment in log units [i.e. D ¼ log(O/E), where O is the
“observed” recruitment and E the expected recruitment]. The
50-year time-series of observations of annual sea surface height
off the coasts of Washington and Oregon was used as the environ-
mental driver (Schirripa, 2007). Adding the sea surface height data
resulted in an average recruitment deviation (sEnv) of 0.6883, to
which an additional random deviation (sRand) of 0.4765 was
added. This resulted in a total recruitment deviation (sTotal) of
0.8371 given by,

sTotal ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

Env þ s2
Rand

q
:

All simulated environmental observations were randomly drawn
from a normal distribution with a mean equal to the observations
and a coefficient of variation of 20% (Figure 1).

Simulations
The initial year of each simulation was designated 1951, and began
with the population at its unfished stable age distribution, deter-
mined by M and the stock–recruitment curve. The population
was then simulated through 2000, for a total of 50 years.

A particular fishery was simulated, starting 2 years after the
start of the model, with asymptotic selectivity that operated only
in June. The simulated fishery selectivity was length-based and fol-
lowed a simple logistic function. The SS2 model was configured to
length-based selectivity, and it utilized a two-parameter logistic
model (i.e. assumed asymptotic). In all, 500 lengths and ages
were sampled each year. Fishing mortality was set to F ¼ 0.14,
which is twice the natural mortality, M ¼ 0.07.

Two simulated abundance indices were constructed for each
simulated dataset. The first was from a simulated bottom-trawl
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survey, typical of those used on the US west coast for groundfish.
This survey was simulated to have asymptotic, length-based selec-
tivity, to operate only in July, and to have a CV of 0.20. In all, 500
lengths and ages were sampled each year. The second abundance
index was constructed from the simulated environmental data.
Annual estimates of simulated sea surface height were output
with a CV of 0.20.

Model fitting
The expected abundance index I is related to the available popu-
lation abundance by

Ltf ¼ qf Btf 1tf ;

where qf is the catchability coefficient for fishery of survey f and
1tf the abundance index error, assumed to be lognormally
distributed as

lnð1tf Þ � Nð�0:5s2
tf ;s

2
tf Þ:

In the case where the environmental time-series was treated as
data, Btf was replaced with Dtf, which represents the recruit
deviation for that year (see below).

Selectivity (S) for both the fishery and the survey was made
length-based and followed the logistic equation

S ¼
1

1þ expð�logð19ÞðL� b1Þ=b2Þ
;

where L is the total length, b1 the length at 50% selectivity, and b2

the rate of increase to the asymptote. The SS2 model used a
Beverton–Holt type stock–recruitment: relationship

R̂t ¼
4hR0St

S0ð1� hÞ þ Stð5h� 1Þ
;

where Rt is the estimate of absolute recruitment in year y, h
the parameter for steepness of the stock–recruitment function
(where the value of h specifies the ratio of Rt to R0

when St ¼ 0.2 � S0; thus, the parameter h is bounded by 0.2
and 1.0), R0 and S0 the unfished equilibrium recruitment and

spawning–stock biomass, respectively, and St the spawning–
stock size in year y (Figure 2).

The model method directly adjusts the level of recruitment
expected from the stock–recruitment function as

R̂t ¼ f ðSSBtÞ � expðbEtÞ;

where b is the parameter relating the environmental time-series
(Et) to the recruitment deviation. For years where recruitment
residuals were estimated, the level of total recruitment was given by

Rt ¼ R̂t expð�0:5s2
RÞ expð ~RtÞ;

where sR is the standard deviation for recruitment in log space,
and ~Rt is the lognormal recruit deviation in year y. In our simu-
lations, however, the value of sR that represents the total variation
in recruitment was 0.8371, because the model method accounts for
the environmental portion of the deviation within the stock–
recruitment model structure itself. This value was reduced to
0.4764, so that it reflected only the random (i.e.
non-environmental) portion of the total deviation.

The data method treats the environmental data as if it were a
survey of annual recruitment deviations. This approach is
similar to using the environmental index as if it were a survey of
age-0 recruitment abundance. By focusing on the fit to the devi-
ations, it removes the effect of spawning biomass on recruitment.
In this method, the likelihood of the deviations are expressed as

Likelihood ¼ 0:5
X

t

lnðEtÞ � lnðD̂tÞ

st

 !2

;

where Et is the environmental observation at time t, Dt the devi-
ation from the fitted stock–recruitment function at time t, and
st the standard deviation of the observation error of the environ-
mental time-series.

The calculation of deterministic, equilibrium MSY combines
the yield-per-recruit and spawning biomass-per-recruit calcu-
lations with the recruitment levels calculated from the model’s
spawner–recruitment curve. The SS2 model searches for the

Figure 1. Spring sea surface height anomalies off the continental US
west coast used as environmental time-series. Figure 2. Typical Beverton–Holt stock–recruitment relation used for

simulation. The dotted line represents the bias-corrected relationship.
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fishing intensity multiplier that maximizes the product of
yield-per-recruit and recruitment. The search algorithm is
simple; it reverses direction and halves the search step each time
the current calculation is less than the previous calculation for a
fixed number of steps. With the Beverton–Holt spawner–recruit-
ment curve, the equilibrium values are calculated from

Smsy ¼ a
S0f msy

R0
� b; and

Rmsy ¼
4hR0Smsy

S0ð1� hÞ þ Smsyð5h� 1Þ
;

where S0fmsy is the equilibrium spawning output with fishing inten-
sity, fmsy,

a ¼
ð4hR0Þ

ð5h� 1Þ
;

b ¼
S0ð1� hÞ

ð5h� 1Þ
:

The SS2 model consisted of 83 parameters, of which 61 were
freely estimated in the fitting process. These included three
growth parameters, two stock–recruitment parameters, two
survey catchabilities, four selectivity parameters, and recruitment
deviations from 1951 to 2000. The total likelihood function
included terms for indices of abundance, length and age compo-
sitions, size-at-age, and recruitment deviations.

Seven different simulation schemes were employed:

(i) Scheme 0: no environmental effect and no fitting method.
This was used to establish baseline values against which to
compare subsequent runs. The true values, with which the
resulting distributions from this set of runs were compared,
were corrected so that the central tendencies fell as close to
zero as possible. All subsequent parameter estimate distri-
butions were compared with these new corrected values.
The time-series of recruitment estimates were not corrected
in any manner.

(ii) Scheme 1: same as scheme 0, except output simulated data
starting in 1990 (rather than 1951). All subsequent simu-
lation start the data output in 1990 as well.

(iii) Scheme 2: introduce environmental effect into FSIM with
no attempt to model it within SS2.

(iv) Scheme 3: maintain environmental effect in FSIM and use
model method with no R1 parameter (see below) within
SS2 (explicit deviations from the S/R curve, assuming no
measurement error).

(v) Scheme 4: maintain environmental effect in FSIM and use
model method with estimated R1 parameter within SS2
(the R1 parameter is an exponential offset to the estimated
R0, which should calibrate for the reduced sR inherent in
this method).

(vi) Scheme 5: maintain environmental effect in FSIM and use
data method within SS2 (use environmental data as an
age-0 survey with a CV ¼ 0.20).

(vii) Scheme 6: maintain environmental effect in FSIM and use
data method within SS2; allow the value of the sR par-
ameter to be estimated within the assessment model (but
does not contribute to the likelihood value).

The responses of the following variables were examined: unfished
recruitment level (R0), steepness of the stock–recruitment func-
tion (h), survey catchability (q), and MSY using percentage relative
error: percentage relative error ¼ 100 � [(est 2 true)/true],
where est is equal to the SS2 estimated value and true the adjusted
value from the FSIM simulator.

Results
Properties of simulations
The degree of correlation between the percentage errors of the esti-
mated parameters was similar between the various schemes.
Therefore, correlations were calculated on the estimates aggregated
between all the schemes (Table 1). Estimates of MSY were most
strongly correlated with the estimates of h (r ¼ 0.52), and least
correlated with the estimates of catchability q (r ¼ 20.23).
Estimates of R0 were most strongly correlated with estimates of
MSY (r ¼ 0.37) and least correlated with estimates of catchability
q (r ¼ 0.06).

To achieve a more accurate calibration between the simulation
and assessment models, a set of 1000 simulations was run, which
sampled 5000 ages and lengths from the simulated fishery and
survey for all years (1951–2000). The true value of the simulated
parameters was adjusted so that the central tendency of the percen-
tage error of the resulting parameter estimate density plots was
centred as close to zero as possible (see scheme 0 above).

When provided with large sample sizes from high-quality data-
sets from the FSIM simulator, the SS2 assessment model produced
parameter estimates with a high degree of agreement with the true
values from the simulator. However, minor adjustments to the
true simulated values were necessary to centre the central ten-
dencies of the resulting percentage-error density distributions
exactly on zero. The required corrections were made to the follow-
ing FSIM parameters: R0 ¼ 0.6%; h ¼ 0%; q ¼ 24.0%,
MSY ¼ 25.0%. These adjustments were necessary because of
slight differences in the manner that the two platforms handled
such aspects as within-year growth and size- vs. age-at-first-
maturity.

With the above-mentioned adjustments made, the SS2 model
was able to fit all the parameters well when considering scheme
0. Estimates of the annual values of recruitment and spawning–
stock biomass were also estimated with a great deal of accuracy
and precision. This was partly attributable to the large amount
of quality data available to fit the model. There were some slight
differences in the central tendency of the density plots, which
were adjusted for, to make subsequent differences more intuitive
and easier to spot. These minor differences are believed to stem
from the different assumptions between FSIM and SS2 with

Table 1. Pearson correlation coefficient matrix of the percentage
error of the selected estimated parameters for all schemes.

R0 h q MSY

R0 1.00
h 20.23 1.00
q 0.06 20.43 1.00
MSY 0.37 0.52 20.29 1.00
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regard to growth. However, they did not significantly affect the
final evaluations of the accuracy and precision of the various
schemes considered in the study.

Shortening the data time-series resulted in estimates of the unf-
ished recruitment level parameter (R0) being overestimated
(Figure 3, scheme 1). However, adding the environmental effect
to the simulations accentuated the overestimation (Figure 3,
scheme 2). The R0 parameter was most accurately estimated
when using the data method along with estimating sR within
the assessment model (Figure 3, scheme 6). Although schemes
3–5 each improved the estimate of the R0 parameter, the value
was overestimated in each case, resulting in a risk-prone
outcome (Table 2). This was likely because the environmental
time-series started with mostly positive anomalies for the first 12
years (years 1951–1962; Figure 1). Coupled with this is the fact
that there were fewer datapoints at higher levels of spawning–
stock biomass. Therefore, that part of the stock–recruitment
curve (and consequently the R0 parameter) was estimated from
fewer data points that were associated positive residuals.

Estimates of the steepness parameter (h) were more accurate
than those of the R0 parameter for all simulation schemes, although
generally less precise (Figure 4). The addition of the environmental
data added precision to the estimate of the h parameter. The most
accurate estimate of h came from using scheme 2, whereas the least
accurate estimate resulted from using scheme 5 (Table 2). The
reason for this outcome is not obvious; however, a larger number
of datapoints were in the portion of the stock–recruitment curve
that has a greater influence on the estimate of steepness, this
being the area of lower spawning–stock biomass (Figure 2). It is
likely that the estimates of steepness are robust to whichever
scheme is used for reasons similar to why the estimates of R0 are

less robust (i.e. the distribution of the simulated observations of
spawning–stock biomass and recruits). Scheme 5 resulted in a
slightly risk-prone estimate of h, whereas the scheme 6 estimate
was more risk-averse.

Although the survey catchability parameter (q) was always
underestimated by �4%, compared with the other parameter esti-
mates it was the most stable between schemes; however, it was also
estimated with the least precision (Table 2, Figure 5). With the true
catchability set at 1.0, the estimated catchability was estimated as
�0.96, which is well within the limits expected from an actual
stock assessment estimate. Though not demonstrated or discussed
here, estimates of q were also affected by the estimates of the selec-
tivity parameters. The estimates of the two selectivity parameters
were also very consistent between schemes and consistently slightly
underestimated.

Relative to the other parameters, the estimates of MSY dis-
played considerably more variability between schemes (Table 2).
When the environmental data were added, the estimates became
more precise, but less accurate (Figure 6, scheme 2). Estimates
of MSY were most accurate using scheme 6. All schemes resulted
in a risk-prone estimate of MSY, except for scheme 6, which was
slightly risk-averse.

Figure 3. Density plots of percentage error for the estimates of the
virgin recruitment (R0) parameter across schemes.

Table 2. Mean, median, s.e., and lower (LCL) and upper (UCL) 95%
confidence limits of each of the relative percentage errors for the
estimated parameters under consideration.

R0 h q MSY

Scheme 1
Mean 13.40 1.81 23.86 14.37
Median 11.52 20.69 24.25 12.65
s.e. 0.35 0.48 0.50 0.80
LCL mean 12.70 0.87 24.85 12.79
UCL mean 14.09 2.77 22.87 15.94

Scheme 2
Mean 19.24 20.65 1.41 17.29
Median 18.50 21.07 0.92 17.69
s.e. 0.28 0.21 0.48 0.54
LCL mean 18.70 21.05 0.47 16.23
UCL mean 19.79 20.24 2.35 18.35

Scheme 3
Mean 5.47 2.17 24.18 7.06
Median 5.06 1.12 23.72 6.92
s.e. 0.26 0.29 0.46 0.48
LCL mean 4.95 1.60 25.08 6.13
UCL mean 5.99 2.74 23.28 8.00

Scheme 4
Mean 5.50 2.12 24.04 6.61
Median 4.91 0.77 24.30 6.84
s.e. 0.27 0.29 0.48 0.54
LCL mean 4.97 1.55 24.99 5.53
UCL mean 6.03 2.70 23.10 7.69

Scheme 5
Mean 9.75 8.61 24.93 18.35
Median 8.91 7.10 25.52 18.61
s.e. 0.31 0.36 0.59 0.69
LCL mean 9.13 7.91 26.08 17.00
UCL mean 10.37 9.31 23.78 19.70

Scheme 6
Mean 2.31 23.70 22.00 23.42
Median 1.59 24.88 22.04 23.14
s.e. 0.29 0.32 0.60 0.48
LCL mean 1.74 24.33 23.18 24.36
UCL mean 2.88 23.08 20.83 22.47
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The major effect of removing the first 40 years of data was to
overestimate the R0 parameter by 13.40% (Table 2). However,
the steepness and survey q parameters were well estimated, being

within 1.82 and 23.86% of the true values, respectively. The over-
estimation of R0 resulted in an overestimate of MSY of 14.37%.

When the environmental signal was included in the simu-
lations, with no explicit modelling for it, the estimates of R0

were overestimated by 19.24% and steepness by only 20.65%.
This in turn led to MSY being overestimated by �17.29%. The
q parameter remained well estimated. The environmental signal
caused a great deal of imprecision in the estimates of annual
recruitment. However, no bias was evident (Figure 7). Any appar-
ent patterns in Figure 7 may be artifacts of the particular environ-
mental time-series used and could have been different if a random
point in the 50-year time-series were used to start the simulation.
The residual pattern in recruitment resulted in a similar pattern in
the spawning–stock biomass residuals (Figure 8).

Examination of the percentage error summed across all years
indicates that recruitment was estimated more accurately than
spawning–stock biomass (Figure 9). Spawning–stock biomass
was consistently underestimated with the addition of the environ-
mental signal, regardless of the scheme used. Scheme 3 resulted
in not only the most accurate estimates of recruitment and
spawning–stock biomass, but also the most precise (Figure 9).
Scheme 6 resulted in least accurate estimates of both recruitment
and spawning–stock biomass, as well as the least precise.

Discussion
Regardless of which scheme was used, the inclusion of the true
environmental data resulted in better estimates of historical
stock size and productivity than not including it. Although not
included in this study, both methods could offer ways to deter-
mine whether the inclusion of the environmental data significantly
improves the overall model fit. For the model method, if the

Figure 4. Density plots of percentage error for the estimates of the
stock–recruitment steepness (h) parameter across schemes.

Figure 5. Density plots of percentage error for the estimates of the
survey catchability (q) parameter across schemes.

Figure 6. Density plots of percentage error for the estimates of MSY
across schemes.
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addition of the b parameter reduces the total negative log likeli-
hood by more than about two units, the additional parameter sig-
nificantly improves the fit to the data at the 0.05 level, and there is
a statistically significant correlation between the population process
and the environmental time-series (Maunder and Watters, 2003).

Although the data method assumes a priori that a relationship
exists between recruitment and the environment, if the estimated
standard deviation of the environmental time-series is much
greater than the observed standard deviation, the time-series did
very little, if anything, to improve the overall model fit.

Figure 7. Error bars for percentage error of annual estimates of recruitment across all schemes.

Figure 8. Error bars for percentage error of annual estimates of spawning–stock biomass across all schemes.
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Including environmental data could be especially useful when
faced with assessments of data-poor species. For instance, if the
population dynamics of a data-rich representative species in a par-
ticular species assemblage can be demonstrated to respond to par-
ticular environmental covariates, assessments of data-poor species
in that same assemblage could be done using the same environ-
mental covariates. An example of such a situation was demon-
strated for winter-spawning rockfish and changes in the winter
sea level in the California Current system. Ten species of rockfish
(Sebastes spp.) were demonstrated to have similar declining trends
in recruitment from 1983 to 1998. All exhibited similar negative
responses to El Niño conditions in 1983, 1992, and 1998, and all
had similar recovery periods from 1999 to 2002 (S. Ralston,
pers. com.). Environmental or climate data can also be incorpor-
ated into forecasts of possible future stock conditions. This can be
especially useful if it is assumed that future climate conditions will
exhibit a discernible trend. Either of the two methods discussed in
this paper could be used to link climate forecast to future trends in
recruitment. However, only the data method forces a likelihood
compromise between recruitment values predicted directly from
the stock–recruitment curve and those predicted by the environ-
mental data index.

Under the circumstances simulated in this study, scheme 6
resulted in the most accurate estimations of the selected par-
ameters. Scheme 6 also resulted in the greatest overall percentage
error in the estimation of spawning–stock biomass; however,
this error was only �5%. Overall, the performance of the model
and the data methods was sufficiently similar to make it difficult
to conclude that one was superior to the other. Because the
model method used a reduced sR, the R0 parameter had been
expected to be more overestimated than was observed. This is
one of the justifications for using the data method to avoid

having to calculate the reduction in the sR value in the assessment
model. One conclusion is that the signal in the simulated data was
strong enough to arrive at an appropriate estimate of the virgin
recruitment parameter (i.e. R0). Despite these results, there are cir-
cumstances where the data method could be preferable to the
model method. An example is when the environmental data are
incomplete or contain years with no data. Short of some type of
interpolation, years that contain no data would necessarily have
a value of zero, which will be interpreted as a valid datapoint,
representing no deviation for that year (i.e. average environmental
conditions). The data method, on the other hand, would merely
skip years with no data and allow the respective recruitment devi-
ation to be fit to the remaining observation data sources. The data
method may be the better choice if the stock assessment model
does not have to estimate annual recruitment deviations.
Furthermore, because the data method seeks to optimize the fit
between both the fitted stock–recruitment function and the
environmental index, it may be the preferred method for project-
ing possible future recruitment based on environmental forecasts.
In this regard, the best modelling approach would be dictated by
the available data, rather than the model.

This study was designed to simulate the particular biology and
assessment of sablefish off the Pacific west coast of the continental
United States, an eastern boundary current upwelling system. As
such, the results may be associated with the particular annual
patterns of the sea-surface-height index of this system and might
not be fully applicable to other situations. Because the environ-
mental time-series started with years with positive anomalies,
the R0 parameter was overestimated. Had the initial anomalies
been negative, it is likely that the R0 parameter would have been
underestimated. For this reason, the year chosen from which to
start the environmental time-series is critical and must be

Figure 9. Error bars for the percentage error estimates across all schemes.
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considered when interpreting the results. This first-year effect
could have been investigated by starting each of the 1000 simu-
lations at a random point within the environmental time-series.
However, this study was initiated by interest in the actual sablefish
assessment methodology. The first-year effect becomes more
prevalent as the time-series shortens and the first year approaches
the final year of the assessment. Consequently, the best approach
might be to start the environmental time-series and the fitting of
the assessment model as far back in time as the data permit, so
allowing the parameters to be fitted using the widest range of vari-
ation possible. However, this approach implicitly assumes that an
underlying environmental relationship actually existed for the
earlier years within the model.

To arrive at a universal recommendation about which scheme is
the best one required, a more extensive study that includes various
annual environmental patterns is needed. This was beyond the
scope of this paper. It is likely that, even with a more extensive
examination of environmental patterns, one particular scheme
might not be accepted as the best choice for all situations. For
this reason, it is concluded that to find the best scheme for a par-
ticular assessment problem, a set of simulations similar to those
outlined here should be conducted, using the actual datasets
being considered within that particular assessment problem.
Nonetheless, it is quite possible that the climatological and
oceanographic processes indexed by sea surface height could
index the productivity of the California Current system in
general and hence modulate other important biological process.
These biological processes, in turn, could modulate recruitment
success directly or indirectly in other commercially important
species in this ecosystem.
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